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The gap between the predictions of collapse models
and those of standard quantum mechanics widens with
the complexity of the involved systems. Addressing the
way such gap scales with the mass or size of the system
being investigated paves the way to testing the validity
of the collapse theory and identify the values of the pa-
rameters that characterize it.

Despite increasing sensitivities are taking experiments
closer to working points where the potential differences
between collapse-based formulations and standard quan-
tum theory should become apparent, the task of finding
the precise value of the parameters of a given collapse
models is nevertheless difficult. In fact, environmental
decoherence – having at the statistical level the same
signature as collapse models – could mask any collapse-
induced effect, thus biasing the interpretation of related
experimental observations.

The current efforts aimed at the test of collapse models
can be notionally split into two broad classes: interfero-
metric and non-interferometric tests. The former, which
aim at directly probe the validity of the quantum super-
position principle, provide a natural test for any collapse
model. They rely on the creation of a spatial superpo-
sition and, after a suitable time of free evolution – nec-
essary for the propagation of the collapse effects – on
the subsequent measurement of its interference contrast.
The comparison of such contrast, which is weakened by
the environmental and collapse noises, with the predic-
tions of quantum mechanics provides experimental upper
bounds to the collapse parameters. The most successful
experiments in this context have been performed using
matter-wave interferometry and are extensively discussed
elsewhere [1, 2]. Here we focus on the second class of ex-
perimental assessments, namely the non-interferometric
one, with the declared goal of illustrating their poten-
tial for the successful falsification of collapse models in
close-to-state-of-the-art platforms.

The remainder of this Chapter is organised as fol-
lows: In Sec. I we review the recently proposed non-
interferometric approach to the testing of collapse mod-
els. Sec. II specialises our assessment to the opto-
mechanical platform. In particular, we focus on the
description of two recent thought experiments, which

∗Electronic address: matteo.carlesso@ts.infn.it
†Electronic address: m.paternostro@qub.ac.uk

have paved the way to the design of experimental routes
to the falsification of collapse mechanisms. In Sec. III
we assess quantitative bounds provided by a set of ex-
periments that broadly fall into the category of non-
interferometric settings. Finally, Secs. IV and V address
the open questions linked to plausible extensions of stan-
dard and nearly canonical formulations of collapse theo-
ries and the use of rotational degrees of freedom of me-
chanical rotors as ultra-sensitive tools for the inference
of the minuscule effects of collapse models.

I. NON-INTERFEROMETRIC EXPERIMENTS:
A NEW PERSPECTIVE IN COLLAPSE MODEL

TESTING

Differently from interferometric tests, where a super-
position needs to be created, sustained and finally mea-
sured, non-interferometric assessments tests do not rely
on the availability of high-quality non-classical resource
states. A plethora of different experiments fall in this
class, from those involving the x-ray radiation sponta-
neously emitted from Germanium [3–5] to those focussing
on the change of the internal energy of matter-like sys-
tems [6–8], from the monitoring of the free expansion
of cold atoms [9] to experiments based on the dynamics
of opto-mechanical systems, which are currently consid-
ered to be one of the most promising platforms for the
delicate discrimination between collapse-based models an
standard quantum mechanics.

Here, we review the proposals put forward in Ref. [11–
13], which have planted the seeds for the opto-mechanical
exploration of collapse models via non-interferometric ap-
proaches. For concreteness, we will focus on the Con-
tinuous Spontaneous Localization (CSL) model [14–16],
which is characterized by parameters λ and rC: the first
is the collapse rate, while the second is its correlation
distance.

To introduce the effects induced by the CSL model,
we consider a confined system of mass m whose dimen-
sions are, for the sake of simplicity, point-like. The sys-
tem is initially in thermal equilibrium at temperature T ,
which we shall assume to be small so as to make thermal
fluctuations irrelevant. The confining mechanism is then
switched off and the system is let to freely evolve for a
time t, when measurement of the position of the system
is performed. During the free evolution, the effect of the
CSL mechanism can be read out in the spread of the
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FIG. 1. Schematic of the experiment, in which the particle is
levitated by the electric field of the Paul trap and cooled by the
optical cavity.

approaches can only assess the largest of their conjectured
values.

In this Rapid Communication, we propose an experi-
mentally viable way to explore CSL on the mesoscale by
utilizing a cavity-cooled, single-charged nanosphere trapped
in a Paul trap [23]. Measurements can be made with a
single trapped particle in less than 100 s and, under optimal
conditions, we find this scheme capable of probing λcsl to
values as low as 10−12 Hz, thus going significantly beyond
the literature reported so far. Most important, our protocol
allows for the discrimination between collapse effects and
mischaracterized conventional noise ones—a challenge which
has to our knowledge remained unaddressed so far.

We explore the possibility for an optomechanical test of a
form of CSL described in Refs. [10,11,17], in which the effects
of spontaneous localization are modeled as a δ-correlated
stochastic noise source wt . This approach is valid when
the scale of spatial-superposition separations is less than rc.
The noise term wt will occur in the dynamical equations
of the system as an extra Langevin force [17,35]. Its effect
on the dynamics of a mechanical oscillator would depend
on the size and density of the object collapsing and the two
parameters rc and λcsl characterizing the model. Conveniently,
we can represent the effects of the localization process via
a diffusion operator characterized by the coefficient Dcsl and
appearing in the master equation describing the particle in
the same way as conventional heating sources. The diffusion
coefficient takes the form [11]

Dcsl = !
mωm

λcsl

r2
c

α, (1)

where α is a geometry-dependent factor, which for a sphere is
given by

α =
(

m

m0

)2[
e−R2/r2

c − 1 + R2

2r2
c

(e−R2/r2
c + 1)

]
6r6

c

R6
.

Here m0 = 1 amu and R is the sphere’s radius.
The protocol. We now describe the scheme that we propose

to test the CSL model as shown in Fig. 1. We levitate a charged
nanosphere in a hybrid trap consisting of a Paul trap and an
optical cavity, and use them to cool its motion to a temperature
corresponding to a low occupation number. We then turn off

the optical field (and hence the cooling) and let the dynamics
evolve for a certain amount of time before measuring the
energy of the oscillator again. A model including the effects
of CSL predicts it will have heated more than one would
expect due to conventional noise sources alone. If the measured
energy matches that predicted by conventional noise sources,
we will have provided evidence against CSL to within a certain
range of λcsl, whereas a higher measured energy would indicate
some other dynamics at play, in favor of collapse theories.

We divide the procedure into two phases: a cooling phase
and free evolution. For the purpose of testing CSL, it is
the second phase that is important. In this period of free
evolution the nanosphere is levitated using a single electric
potential, which could be provided by a number of generic trap
architectures. The mechanism of cavity cooling for nanoscale
objects is well established [13,23–34], and relies on having
the particle sit in two potential wells, one of which traps
and one (or both) of which cool. Though these potentials are
traditionally provided by an optical cavity populated with two
distinct optical fields, Ref. [23] show that cooling is possible
using a Paul trap in conjunction with a single-mode optical
cavity. While both these systems are required for the cooling
phase, the Paul trap alone suffices to levitate it.

This is appealing, because in the low-pressure scenario of a
particle levitated solely by optical fields, the dominant source
of heating is the scattering of cavity photons [29]. By using a
hybrid trap we can cool the particle to a desired temperature
and then turn off the optical field completely, leaving the
particle suspended in the Paul trap alone. This ability to turn off
the optical field without losing the particle means that we can
do away with what would otherwise be the dominant cause
of heating—optical scattering—and thus greatly reduce the
conventional heating sources that would otherwise mask the
CSL effects.

We emphasize that although we require cooling, we do not
need to achieve the ground-state energy. Indeed, the simple
comparison between the initial phonon number n0 and the
final one nf after the period of free evolution will give us
information on the heating rate [36].

The period of free evolution is governed by the Hamilto-
nian Ĥ = Ĥ0 + Ĥ ′, where Ĥ0 = !ωmâ†â, ωm is the secular
frequency of the Paul trap, â†,â are the creation and annihi-
lation operators for the center-of-mass motion of the sphere
respectively, and H ′ represents the interaction between system
and environment. We can then solve the master equation ρ̇ =
−(i/!)[Ĥ ,ρ] for the oscillator [37]. The forms of coupling
to noise sources in H ′ determine their effects on the master
equation [32]. We have explored each noise source in detail,
examining collisions with the background gas, black-body
radiation, acoustic noise affecting the trap, Johnson and patch
potential noise from the electrodes, micromotion from the
trap’s driving frequency, and anisotropy of the sphere [36]. We
group these noise sources as momentum diffusion, occurring
at rate Dp, position diffusion at rate Dq, and momentum
dissipation at rate &, thus getting the dynamical equation [37]

ρ̇ = − i

!
[Ĥ0,ρ] −

2∑

j=1

Dj [X̂j ,[X̂j ,ρ]] − &[Qz,{P̂z,ρ}], (2)
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The model.—As anticipated, in our setting the oscillator
is embodied by the moving mirror of a Fabry-Perot cavity
that is driven by an external laser field. The mechanical
mirror, whose oscillations are forced by its radiation-
pressure coupling with the cavity field, is assumed to be
in contact with a finite-temperature bath, which would in
turn be responsible for mechanical Brownian motion. In
addition, we assume a nonlinear mechanism to act on the
oscillator, as described by a suitable CM. The setup is
illustrated schematically in Fig. 1. The explicitly open-
system nature of the dynamics undergone by the device is
fully captured by adopting a Langevin formalism to
account for the Brownian noise, the leakage of the cavity
field, the input white noise to the cavity, and the effect of
the CM considered in our analysis. In order to set a
benchmark, we concentrate on the mass-dependent con-
tinuous spontaneous localization (CSL) model, which is
one of the most-studied CMs in literature. The overall
dynamics is thus described by the equation

∂tÔ ¼ i
ℏ
½Ĥ; Ô# þ i

ℏ
½V̂t; Ô# þ N̂ ; (1)

with Ô a generic operator of the system, Ĥ the Hamiltonian
relating the coherent part of the evolution, N̂ the contri-
bution due to standard environmental noise, and V̂t the
intrinsic noise accounted for using many-body CSL theory.
By using Eq. (1) as the building block of our analysis,

our goal is to show that signatures of the intrinsic collapse
noise are visible in the density noise spectrum (DNS) of the
mechanical oscillator. In the following, we assume the
mirror to have mass m, natural oscillation frequency ωm,

and energy damping rate γm. The cavity of length L
sustains a single mode of radiation of frequency ωc
described by the bosonic annihilation and creation oper-
ators â and â†. The external pump has frequency ω0 and
input power P. In a rotating frame at the frequency of the
external pump, the model Hamiltonian reads

Ĥ ¼ ℏðωc − ω0Þâ†âþ 1

2
mωmq̂2 þ

p̂2

2m
− ℏχâ†â q̂þiℏEðâ† − âÞ; (2)

where q̂ is the position operator of the center of mass of
the mechanical mirror, χ ¼ ωc=L is the optomechanical
coupling rate, and E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κP=ℏω0

p
quantifies the cavity-

pump coupling (κ is the cavity single-photon decay rate). The
interaction term−ℏχâ†â q̂, which puts together the mechani-
cal mirror and the cavity field, describes the optomechanical
coupling under the assumption of the large free spectral
range [19]. As illustrated in the Supplemental Material [20],
the stochastic linear potential V̂t can be cast into the form

V̂t ¼ −ℏ
ffiffiffi
λ

p
wtq̂; (3)

where wt describes white noise characterized by the stat-
istical properties EðwtÞ ¼ 0, and Eðwt; wsÞ ¼ δðt − sÞ.
Here, Eð·Þ indicates expectation value and Eð·; ·Þ stands
for a correlation function. Moreover, [20]

λ ¼ γ
3m2

0

X3

k¼1

Z
e
−jr−r0 j2

4r2
C

ð2
ffiffiffi
π

p
rCÞ3

∂rkϱðrÞ∂r0k
ϱðr0Þdrdr0; (4)

with m0 ¼ 1 amu, ϱðrÞ the mass density of the mechanical
mirror, rC ¼ 10−7 m a characteristic length entering the CSL
model, and γ a coefficient that measures the strength of the
coupling with collapse noise. Ghirardi, Pearle, and Rimini
[8] set γGRW ≃ 10−36 m3 s−1, while Adler [21] sets
γA ≃ 10−28 m3 s−1. Much larger or smaller values are ruled
out [8,21]. As a benchmark for the quantification of λ, one
can consider a homogeneous spherical object of radius R and
mass m. Using Eq. (4), one thus gets

λ ≈
3γm2

8πð3=2Þm2
0rCR

4
ð1 − e−R

2=r2CÞ: (5)

Let us now get back to Eq. (1). We now have all the
ingredients to write explicitly as a set of quantum Langevin
equations reading [22]

∂tq̂ ¼ p̂=m;

∂tp̂ ¼ −mω2
mq̂þ ℏχâ†â − γmp̂þ ξ̂þ ℏ

ffiffiffi
λ

p
wt;

∂tâ ¼ iðω0 − ωcÞâþ iχq̂ â−κâþ
ffiffiffiffiffi
2κ

p
âin; (6)

FIG. 1 (color online). Scheme of the principle of the exper-
imental setup proposed to test the CSL model. A Fabry-Perot
optomechanical cavity is pumped by a laser at frequency ω0 and
strength E. The pump populates a mode of the cavity field that is
coupled to a vibrating mirror (frequency ωm). A quarter-wave
plate (QWP) and a polarizing beam splitter (PBS) are used to
redirect the light leaking from the cavity after the interaction with
mechanical mirror, which is affected by both radiation-pressure
and the nonlinear mechanism responsible for CSL, to a spectrum
analyzer. The rightmost pumping field is used to cool the
mechanical oscillator to low temperatures. Zigzag arrows are
used to represent the CSL mechanism (λ) and the Brownian
noise (ξ) affecting the mechanical oscillator.
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FIG. 1: Graphical representation of two opto-mechanical setups proposed for testing collapse models. (a): A Paul trap, which
provides the mechanism for the levitation of a charged nanoparticle, is supported by an optical cavity, required for the particle
cooling. Picture taken from Ref. [10]. (b): End-cavity opto-mechanical setup as proposed in Refs. [11–13]: the cavity field
is sustained by an external laser at frequency ω0. The end mirror resonates at frequency ωm and is subject to environmental
noise – described as Brownian motion at non-zero temperature and associated with the noise operator ξ – and collapse noise
(described by the operator λ). Picture taken from Ref. [11]. The detection scheme is the same in both the setups: a quarter-
wave-plate (λ/4-plate or QWP) and a polarizing beam splitter (PBS) are used to redirect the light leaving the cavity to a
detector for the reconstruction of the optical DNS.

position, which reads

〈x̂2(t)〉 = 〈x̂2(t)〉
QM

+
λ~2t3

2m2
0r

2
C

, (1)

where m0 is the mass of a nucleon, 〈x̂2(t)〉
QM

gives the
contribution due to quantum mechanics, and the last
term is due to the CSL effect. There is a qualitative dif-
ference between the evolution of the spread due to quan-
tum mechanics (which is ∼ t2) and the contribution aris-
ing from the collapse mechanism (∼ t3). The diffusion in-
duced by the environment has a behaviour similar to the
one due the collapse mechanism [17]. On this basis, a way
to extrapolate the parameters of CSL would pass through
the observation of the diffusive Brownian process and the
consequent establishment of bounds on the collapse pa-
rameters. This idea was put forward in Ref. [10], which
considered a levitated charged nanosphere in a Paul trap
supported by an optical cavity [the latter being needed
for passive cooling of the system, cf. Fig. 1 (a)]. Clearly,
the standard decoherence sources, such as thermal pho-
ton emission, absorption and scattering as well as the
collision with the residual gas particles, would also con-
tribute to the diffusive motion of the system. The anal-
ysis performed in [10, 18] is, in this context, particularly
useful as reporting a comparison between possible dif-
fusive contributions from collapse models and analogous
terms resulting from standard decoherence mechanisms.
By following ideas akin to those pursued in Ref. [10],
quantitative bounds on the CSL parameters were derived
from a cold atom experiment [9], where the free expan-
sion of the gas cloud was characterized and compared
with the collapse-induced diffusion. The corresponding
upper bounds are reported in Fig. 2.

II. OPTO-MECHANICAL SYSTEM AS A
PROBE OF THE COLLAPSE MECHANISM

Let us now turn to the role played by opto-mechanical
in the assessment of collapse models. They focus on
an indirect effect provided by the collapse mechanism,
which is an extra Brownian-like motion of the center of
mass of the mechanical component of an opto-mechanical
system. Such motion leads to an extra diffusion mecha-
nism that can be detected through standard experimental
techniques and, under suitable conditions, provide infor-
mation on the undergoing collapse mechanism. In order
to fix the ideas, we assume a single-sided Fabry-Perot
cavity endowed with an end-cavity mechanical oscilla-
tor and driven by an external laser, which also provides
the mechanism for the measurement of the mechanical
motion [cf. Fig. 1 (b)]. The latter is influenced by a
phononic environment (at non-zero temperature) and, al-
legedly, the CSL-like collapse noise. The action of the
latter can be added to the Langevin equations governing
the opto-mechanical motion, which read [11]

dx̂t
dt

=
p̂t
m
, and

dp̂t
dt

= −mω2
mx̂t+~χâ†t ât−γmp̂t+ξ̂t+F̂

CSL

t ,

(2)
where ωm and γm are the harmonic frequency of the mir-
ror and its damping constant, χ denotes the coupling
of the mechanical oscillator with the cavity field, whose
creation and annihilation operators are â† and â respec-

tively. Here, ξ̂t and F̂CSL
t denote the stochastic forces

due to the environment and the collapse mechanism,
respectively. Indeed, the collapse action can be mim-
icked by adding to the Schrödinger equation a stochas-
tic potential V̂CSL, whose corresponding force is given by
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F̂CSL(t) = i
~ [V̂CSL(t), p̂]. In the case of CSL we have [3]

V̂CSL = −~
∑
j

mj

m0

∫
dx Ψ̂†j(x, t)Ψ̂j(x, t)N(x, t), (3)

where Ψ̂†j(x, t) and Ψ̂j(x, t) are respectively the creation
and annihilation operators of a j-type particle of mass
mj , and N(x, t) is the a stochastic noise inducing the
collapse, whose mean and correlator are

E[N(x, t)] = 0, and E[N(x, t)N(y, s)] = λδ(t−s)G(x−y),
(4)

with E the stochastic average over the noise and G(x) =

e−x
2/4r2C . Eq. (4) gives a clear interpretation of λ and rC

as, respectively, the collapse rate and the noise correla-
tion distance.

The signatures of the collapses of the mechanical mo-
tion can be tracked through the density noise spectrum
(DNS), whose definition reads

Sxx(ω) =

∫
dΩ

4π
E [〈{x̃(ω), x̃(Ω)}〉] , (5)

where x̃(ω) is the Fourier transform of the fluctuations
of x̂t. Following the derivation in Ref. [19], one finds

Sxx(ω) =
2~2|α|2κχ2

m2 [κ2 + (∆− ω)2] |d(ω)|2

+
~mγmω coth

(
~ω

2kBT

)
+ SCSL

m2|d(ω)|2 ,

(6)

where |α|2 denotes the intensity of the intra-cavity laser,
∆ is the laser-cavity detuning, T is the environmen-
tal temperature, and κ is the cavity dissipation rate.
Moreover we have introduced the susceptibility function
1/|d(ω)|2 with

|d(ω)|2 = (ω2
m,eff(ω)− ω2)2 + γ2m,eff(ω)ω2. (7)

Here, ωm,eff(ω) and γm,eff(ω) denote the effective mechan-
ical frequency and damping rate, respectively. Finally,
SCSL quantifies the action of CSL noise, which can be ob-
tained from E[〈F̂CSL(t)F̂CSL(t′)〉] = SCSLδ(t− t′) with [20]

SCSL =
~2λr3C
π3/2m2

0

∫
dk |µ̃ (k)|2 e−k2r2Ck2x, (8)

where µ̃(k) is the Fourier transform of the mass density.
Here, due to the presence of the latter, two aspects can
be considered. First, SCSL is proportional to the square
of the mass m of the system. Thus, heavier masses can
provide a stronger signature of the collapse mechanism.
Second, Eq. (8) strongly depends on the geometry of the
system and in particular on the ratio between its size L
and rC. Indeed, in the limit of rC � L the collapse noise
will act incoherently on parts of the system which are
distant more that rC, while for rC ∼ L such action will
be coherent. Finally, for rC � L, the collapse action will

be still coherent but unfocused on the system, thus effec-
tively loosing strength. The dependence of SCSL on the
geometry of the system is clearly visible in the shape of
the corresponding upper bounds on the collapse parame-
ters. Indeed, as it is shown in Fig. 1, once the dimensions
L of the system are fixed, one has the strongest bound on
λ for the value of rC ∼ L. This reflects in the characteris-
tic V -shaped form of the bounds of the CSL parameters.

Eq. (6) gives insight in the collapse action on the me-
chanical oscillator. This is the change of the equilibrium
temperature of the system from the environmental one
T to an enhanced effective one. Indeed, in the limit for
high temperatures of the environment this reads [20]

~mγmω coth
(

~ω
2kBT

)
+ SCSL → 2mγmkB(T + ∆TCSL) (9)

with

∆TCSL =
SCSL

2mγmkB

. (10)

One should notice that, here, another parameter of the
opto-mechanical setup plays an important role, namely
the damping rate γm that quantifies mechanical dissipa-
tion. Clearly, the more the system dissipates, the faster
the thermalization process to the environmental temper-
ature, and the smaller the collapse contribution. On the
contrary, in the limit of no dissipation (i.e. for γm → 0),
∆TCSL diverges: this is exactly what should be expected
from the model, whose collapse noise can be associated
to an infinite-temperature bath. In passing, we remark
that generalizations of collapse models have been pro-
posed [21–23] where the noise inducing collapse is as-
sociated with a finite temperature TCSL and an ensuing
dissipative process. We refer to Sec. IV for details on
such models.

As underlined in Ref. [12], the thermal noise, propor-
tional to coth( ~ω

2kBT
), is not the only limitation in de-

tecting the collapse-induced diffusion. Indeed, also the
measurement process contributes to enhancing the noise
in the readout signal, thus screening the signal from the
collapse mechanism. Clearly, a precise characterization
of the thermal effects and the measurement backaction
would provide stronger upper bounds to the collapse pa-
rameters.

III. EXPERIMENTAL BOUNDS

The first application that we consider is the one re-
ported in Ref. [28], where three experiments – LIGO,
AURIGA and LISA Pathfinder – have been considered.
The first two are gravitational wave detectors, while the
last one is only a prototype of a future gravitational wave
detector. In all such experiments, a mechanical resonator
is monitored through optical techniques. Due to the mass
of the systems (∼ 2 kg for LISA Pathfinder, ∼ 40 kg for
LIGO and ∼ 2300 kg for AURIGA), the back-action of
the optics can be neglected, and one considers only the
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FIG. 2: Exclusion plots for the CSL parameters with respect to the GRW’s and Adler’s theoretical values [16, 24]. Left panel
- Excluded regions from interferometric experiments: molecular interferometry [1, 25] (blue area), atom interferometry [26]
(green area) and experiment with entangled diamonds [27] (orange area). Right panel - Regions of the parameter space of CSL
excluded by a set of non-interferometric experiments: AURIGA, LIGO and LISA Pathfinder [28, 29] (red, blue and green areas,
respectively), cold atoms [30] (orange area), phonon excitations in crystals [6] (red line), blackbody radiation from the neutron
star PSR J 1840-1419 and from Neptune [8] (dashed and continuous blue lines, respectively), X-ray measurements [3–5, 31, 32]
(light blue area) and nanomechanical cantilever and its improved version [33, 34] (purple areas with dashed and continuous
bound). The grey color highlights the region excluded on the basis of theoretical arguments [1].

last term in Eq. (6), which depends explicitly on the ex-
periment considered. The single arm of LIGO and LISA
Pathfinder consists of two masses, modelled as harmonic
oscillators, whose relative distance is monitored. Con-
versely, AURIGA is a resonant bar whose elongation is
measured. For the latter, one can model the system as
two half-mass harmonic oscillators oscillating in coun-
terphase. Thus, the modelling is the same for all three
experiments. Eq. (8) is consequently modified to read

SCSL =
~2λr3C

2π3/2m2
0

∫
dk |µ̃ (k)|2 e−k2r2Ck2x(1−eiakx), (11)

where a is the distance between the two masses. Such
systems are well outside the quantum realm due to their
masses, which also prevent their use in interferometric
experiments. However, they set important bounds on the
collapse parameters, which are here reported in Fig. 1.

The second application that we aim at covering is that
reported in Refs. [33, 34], where a heavy micrometrical
sphere is attached to a silicon cantilever, which acts as a
mechanical resonator. As the sphere is ferromagnetic, in
place of the optics, a low noise SQUID can be employed
to monitor the mechanical motion of the cantilever. The
system is placed in high vacuum and low temperature to
minimize the thermal action of the environment. More-
over, in order to better characterize the thermal compo-
nent of the noise, different measurements of the DNS of
the system were performed at different temperatures of
the environment, ranging from 11 mK to ∼ 1 K. Thus, by
exploiting Eq. (10), one can determine upper bounds on

the collapse parameters λ and rC, which are reported in
Fig. 1.

IV. TESTING OF THE DISSIPATIVE AND
COLORED CSL MODELS

The CSL model have two weaknesses [16]. The first is
the steady increase in the energy of any (free) system in
time, e.g. an hydrogen atom is heated by ' 10−14 K per
year taking the values λ = 10−16 s−1 and rC = 10−7 m.
Although the increment is small, it is not realistic feature
even for a phenomenological model. On the other hand,
one expects that, through a dissipative mechanisms, the
system will eventually termalize to the finite tempera-
ture of the collapse noise. Although there are theoretical
arguments suggesting the value of such a temperature
to be TCSL ' 1 K [21, 23], one needs to validate them.
While an interferometric investigation was performed in
Ref. [1, 2], and a non-interferometric measurement of
the free expansion of a cold-atom cloud was studied in
Ref. [9], the theoretical setting for an opto-mechanical
test of the dissipative extension of the CSL model was
proposed in Ref. [22]. Fig. 3 shows how the experimental
bounds change when the dissipation is explicitly consid-
ered in the collapse mechanism for two values of the TCSL.

The second weakness of the CSL model is that its noise
has a white spectrum. This is clearly an approximation
as no physical noise can be perfectly white. Conversely,
one expects the existence of a cutoff frequency ΩC above
which the collapse mechanism is negligible. Theoretical
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arguments suggest ΩC ∼ 1012 Hz [35, 36]. The introduc-
tion of the cutoff changes the predictions of the model:
the correlations of the noise in Eq. (4) are modified in
E[N(x, t)N(y, s)] = λf(t − s)G(x − y), where f(t) de-
scribes the time correlations of the collapse noise. Cor-
respondingly, the DNS in an opto-mechanical system be-
comes ScCSL(ω) = SCSL× f̃(ω), where f̃(ω) is the Fourier
transform of f(t) [37]. Bounds on the CSL parameters
for colored noise were studied in detail in Ref. [1, 9, 37].
In particular, upper bounds from high frequencies ex-
periments (or involving small time scales) are weakened
when moving to small value of ΩC. Fig. 3 shows the up-
per bounds to the colored CSL extension for two values
of ΩC.

V. PROPOSALS FOR FUTURE TESTING

Opto-mechanical proposals have been put forward
aimed at strengthening the current upper bounds on the
collapse parameters. A first one consists in the modi-
fication of the cantilever experiment in Ref. [34], where
the homogeneous mass is substituted with one made of
several layers of two different materials [38]. This will in-
crement the effect of the CSL noise for the values of rC of
the order of the thickness of the layers. The hypothetical
upper bounds that can be inferred from such scheme are
shown in Fig. 4.

A second possible test focuses on the rotational degrees
of freedom in place of the vibrational ones [20, 39]. The
former can quantify the CSL action in a form similar to
that in Eq. (10), where the collapse-induced contribution
to the temperature is that related to the rotational de-

grees of freedom and reads ∆T rot
CSL = Srot

CSL/2kBDφ, where
Dφ is the rotational damping rate and

Srot

CSL =
~2λr3C
π3/2m2

0

∫
dk
∣∣ky∂kz µ̃(k)− kz∂ky µ̃(k)

∣∣2 e−r2Ck2

.

(12)
Eq. (12) quantifies the stochastic torque induced on the
system by the collapse noise. When such a scheme is
applied to macroscopic systems, it can provide a sensi-
ble improvement of the bounds on the collapse param-
eters, cf. Fig. 4. A direct application was considered in
[20], where the bound from LISA Pathfinder [28] can be
significantly improved by considering also the rotational
degrees of freedom.

The above are only two of several proposals [10, 18, 40–
42] suggested over the past few years aimed to push the
exploration of the CSL parameter space.
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FIG. 3: First and second panels: Upper bounds on the dissipative CSL parameters λ and rC for two values of the CSL
noise temperature: TCSL = 1 K (first panel) and TCSL = 10−7 K (second panel). Picture taken from [22]. Third and fourth
panels: Upper bounds on the colored CSL parameters λ and rC for two values of the frequency cutoff: Ωc = 1015 Hz (third
panel) and Ωc = 1 Hz (fourth panel). Picture taken from [37]. Red, blue and green lines (and respective shaded regions):
Upper bounds (and exclusion regions) from AURIGA, LIGO and LISA Pathfinder, respectively [28]. Purple region: Upper
bound from cantilever experiment [34]. Orange and grey top regions: Upper bound from cold atom experiment [9, 30] and from
bulk heating experiments [6]. The bottom area shows the excluded region based on theoretical arguments [1].
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FIG. 4: Exemplification of two possible experimental tests of collapse models. First panels: Hypothetical upper bounds
obtained from substituting the sphere attached to the cantilever used in [34] with a multilayer cuboid of the same mass for
various thickness of the layers [38]. The bounds are compared with that from the improved cantilever experiment [34] shown in
orange. Picture taken from [38]. Second panel: Same as the first panel, but with a mass ten times larger. Picture taken from
[38]. Third panel: Results of the analysis proposed in [20, 39] where the rotational degrees of freedom of a cylinder are studied.
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those from the translations (blue and green lines). Picture taken from [20]. Fourth panel: Red shaded area highlights the
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with the blue line [20] (grey area [28]). Picture taken from [20].
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